

Quarterly Technical Newsletter of Australia's leading supplier of low-voltage motor control and switchgear

ISSUE 39 - July 2003

Please circulate to	

In this Issue...

Protection of the Operator Cable Selection 2 Fault Loop 3 Energy Tables 4

Location of Devices

5

MOTOR PROTECTION CTHE WIRING RULES

The introduction of the year 2000 edition of the Wiring Rules changed the requirements for the protection of motors and the cables supplying them. These changes are still causing confusion and the result is that some installations do not comply and installations that do comply have been rejected. This article is intended to help clarify the situation.

Motor Protection assembly with overcurrent and thermistor overtemperature relays

Protection of the motor

An electric motor can be damaged by many things including overloading, incorrect supply voltage and phase imbalance. The Wiring Rules require most motors to be protected against overload currents. This is achieved with the typical thermal overload relay used for monitoring the current drawn by the motor. In addition to this, there is a requirement for motors running unattended to have over temperature protection. While the intention of the basic thermal overload relay is to prevent over heating of the motor, it may not always

correctly sense the temperature of the windings. A device embedded in the windings such as a thermistor or thermostat is typically used to directly monitor temperature. These are

connected in the

Typical over temperature device is an embedded thermistor or thermostat.

Thermal modeling relays can also provide over temperature protection.

Overload protection required for all motors exceeding 0.37 z (monitors current)

> Over temperature protection required for motors running unattended if above 480 VA for shaded pole motors, 240 VA for other types and above 2.25 kW for submersible pumps.

control circuit in a way that causes the motor control contactor to open when high temperatures are detected.

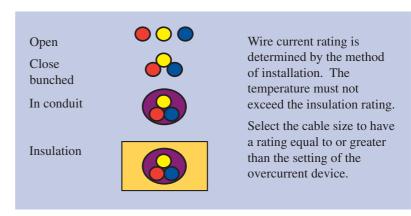
Protection of the operator

Isolation devices are required to allow the motor to be turned off by the operator should an unsafe condition arise. For maintenance an isolation device is required and if remote from the motor, it must be provided with the means to lock it in the OFF position. The circuit breaker providing short circuit protection is often used for this purpose. If remote from the motor an isolation device must be provided with the means to secure it in the open position.

Isolation means to be provided so it can easily be operated by the person in charge of the motor and at all points where danger is likely to occur.

Cable selection

The cables supplying a motor are now treated in the same manner as any other cable in the fixed wiring system. They must be provided with protection against overload and fault currents.

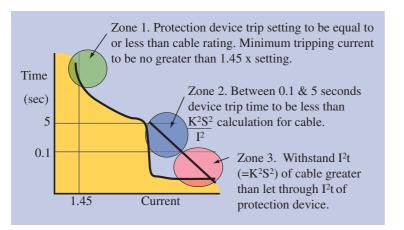

Zone 1

The first step is to select a cable suitable for the motor rated current (Zone 1). The cable rating is determined by the temperature reached in the installed position. Any restriction on the cable s ability to transfer the heat produced by the passage of current to the surrounding environment will reduce its rating. The standard AS/ANZ3008.1 provides rating tables for cables mounted in typical configurations. The cable rating selected must be equal to or greater than the rated motor current and equal to or greater than the setting of the over current protection device. The over current device will not normally trip at its setting and will require some degree of overload before it does. The Wiring Rules allow a factor of 1.45 x, the setting for tripping to occur. Motor protection thermal overload devices comply with this requirement and are therefore suitable for the overload protection of the cables as well as the motor.

Zone 2

The second step is to check that the cable selected is protected against fault currents. High currents cause rapid heating of cables and for durations under 5 seconds, it is considered that all the heat produced in the cable is absorbed by the cable and no heat is lost to the surroundings. The protective device must operate quickly enough to prevent the peak temperature reached from causing significant damage to the cable insulation. The factors to be considered are the cable cross section, the accepted peak temperature of the insulation and the starting temperature. The combination of these factors is considered in

AS/ANZ3008.1 and tables are provide so that an overall factor k can be determined. A typical factor used is k = 111 and the adjacent cable selection table provides the current that will produce the permitted rise with a 5 and 0.1 second duration. These points can be compared with the protective devices

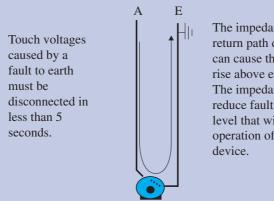


time current curve to check the devices clears the fault before these times are reached (Zone 2). If the time current curve is plotted with a log scale for both the X and Y axis, the cable 5 and 0.1 second points can be joined with a straight line for consideration of intermediate times.

Zone 3

For fault levels producing a shorter clearing time than 0.1 second (Zone 3), the let through I²t of the protective device needs to be compared with the cable withstand I²t. This is a comparison of energies. For circuit breakers, the energy let through varies greatly with fault current level so the value to be considered is the let through energy at the maximum fault prospective at the point of installation of the circuit breaker. For fuses, it is normal just to consider the energy let through at the maximum short circuit rating. Manufactures provide energy let through characteristic for circuit breakers and fuses.

For normal protection of cables, the consideration of fault current levels will not normally result in the need to over size the cable. In the case of motor protection, it is common to have the fault current



protective device selected for a larger rating than the motor. This is to prevent tripping on motor starting currents. In these cases, a larger cable may be required especially if the over sizing has resulted in the next circuit breaker frame size being selected.

Fault loop

Selection of the cable sizes and protection device can also be altered by the requirement to ensure that during a fault, exposed conductive parts are not raised to a potential of greater than 50 volts for a period of time greater than 4 seconds for fixed equipment. The passage of current through the earth system

produces this rise in voltage and it can be a problem with long cable runs. As the cable length increases so does the impedance, increasing the possible touch voltage as well as reducing the maximum fault current. With the reduction in fault current, it is possible to have operating times of the protective device greater than 4 seconds. Options to overcome this include the fitting of earth fault sensing relays and

The impedance of the earth return path during a fault can cause the motor frame to rise above earth potential. The impedance may also reduce fault current to a level that will cause slow operation of the protective device.

increasing the cable cross section. Selecting faster acting protection is not always an option when considering motor protection arrangements. Some motor protection relays operate faster when the currents are out of balance and this should be considered if tripping time is found to be a problem.

SHORT CIRCUIT PROTECTION

Let through energy l²t

Fuse				
Туре	Rating	Total I²t		
	Amps	x 10 ³		
N range	10	0.4		
BS88 style	16	0.7		
	20	1.2		
	25	2		
	32	4		
	40	7		
	50	9		
	63	17		
	80	21		
	100	59		
	125	92		
	160	144		
	200	370		
	250	490		
	315	709		
	355	1,100		
	400	2,270		
	500	2,010		
	630	4,500		
	710	4,300		
	800	8,640		

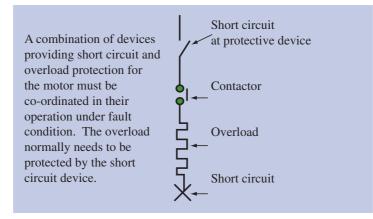
Circuit breaker						
Туре	Rating	I²t (x 10³) at fault prospective				
	Amps	10 kA	20 kA	30 kA	40 kA	50 kA
DinT 10	10	24				
	16	29				
	20	35				
	25	41				
	32	47				
	40	50				
	50	63				
	63	70				
XS125NJ	50-125	550	1,200			
XH125NJ	50-125	530	850	1,100	1,250	1,300
XS250NJ	160-250	900	2,000			
XH250NJ	160-250	780	1,400	1,800	2,300	2,400
XS400NJ	250-400	1,300	2,800	4,400	5,800	6,800
XH400NJ	250-400	1,300	2,800	4,400	5,800	6,800
XS630NJ	400-630		6,000	8,000	12,000	14,000
XH630NJ	400-630		6,000	8,000	12,000	14,000

Note: Fuses and circuit breaker from NHP.

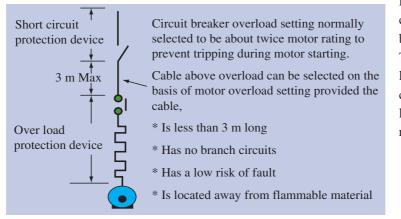
CABLE SELECTION

Withstand currents and I^2t (k = 111)

Cable area	Current (a	l²t	
(sq mm)	ım) 0.1 sec 5 sec		x 10 ³
2.5	878	124	77
4	1,404	199	197
6	2,106	298	444
10	3,510	496	1,232
16	5,616	794	3,154
25	8,775	1,241	7,701
35	12,285	1,737	15,093
50	17,551	2,482	30,803
70	24,571	3,475	60,373
95	33,346	4,716	111,197
120	42,122	5,957	177,422
150	52,652	7,446	277,223
185	64,937	9,184	421,686
240	84,243	11,914	709,690
300	105,304	14,892	1,108,890
400	140,405	19,856	1,971,360
500	175,506	24,820	3,080,250


Cable withstand current for 0.1 seconds and 5 seconds to be higher than the trip current of protective device for the same times. Refer to catalogue information for protective devices times versus current curve.

Cable I²t to be higher than protection devices let through I²t.


Protection co-ordination

If separate devices are used for overload and fault current protection, the Wiring Rules require their operation to be co-ordinated so that the overload device is protected under short circuit conditions. In motor starting application, motor starter combinations are tested in accordance to AS3947.4 to prove the combination is satisfactory under fault conditions. Co-ordination can be to Type 1 or Type 2, with the major difference being that Type 1 permits permanent welding of the contactor contacts.

Location of devices

In a motor starting arrangement, it is common for the overload and the short circuit device to be at different locations in the circuit. With the circuit breaker selected having a thermal current setting greater than the motor rating, there is often an issue regarding the protection of the cable between the overload and the circuit breaker. If the method of installation meets the requirements of the Wiring

Rules, this cable can be considered as being protected by the downstream overload. The basic requirements are, less than 3 m long, no branch circuits, low risk of fault and located away from flammable materials.

Disclaimer. This article does not detail all requirements of the Wiring Rules and installers should only consider this as a basic guide.

If you would like previous copies of Technical News, please complete the following form and **fax to NHP on (03) 9429 1075** marked to the attention of the **Marketing Services Department.**

the Marketing Services Department.					
Name:					
Title:					
Company:					
Add	ress:				
Tele	phone: ()		Fax: ()		
Plec	er issues currently available. ase tick those you would like		19. The thinking contactor (The development of the contactor)		
_	1 First adition (Latabad and		20. Some don t like it hot (Temperature rise in electrical		
	1. First edition (Latched and delayed contactors)	_	switchgear)		
	2. Non-standard contactor applications (Parallel and series connections of contacts varying		21. Pollution of the airwaves (Unwanted signals and their effects on motor protection devices)		
	frequencies) 3. Contactor failure (Reasons for the failure)		22. What s different about safety (Safety devices and their application)		
	4. Soft start for generator loads (Advantages of electronic soft		23. Talk about torque (Motors and torque)		
	starters)		24. Power factor what is it? (Power factor and correction equipment)		
	5. Set the protection (MCCB breakers and application)		25. Terminations, good or bad? (Terminals)		
	6. Contactor operating speed (Difference between AC and DC systems)		26. RCDs are saving lives (Earth leakage protection; RCDs)		
	7. Quick guide to fault levels (Calculating the approximate fault levels)		27. The quality switchboard (Switchgear and protection devices for Switchboards)		
	8. IP ratings what do they mean? (IP Ratings, use and meaning)		28. How does electrical equipment rate (Understanding ratings of		
	9. Utilisation categories (Electrical life of switches)		electrical equipment) 29. EMC - what s all the noise		
	10. AC variable frequency drives and breaking (Regenerative energy)		about (Understanding EMC) 30. Controlling high short circuit		
	11.Don t forget the motor protection (Motor protection devices and application)		currents with current limiting circuit breakers (Short circuit co-ordination KT 7)		
	12. Electrical life of contactors (How and why contactors are		31. Another step in electrical safety (Changes to electrical safety)		
	tested)		32. Keep your cables cool (New requirements on cable protection)		
	13. Liquid resistance starter developments (For large slipring motors)		33. A leak to earth can be electric (RCDs)		
	14. Taking the hiss out of DC switching (DC switching principles)		34. Keep Cool (Derating)		
	15. Start in the correct gear (Application of different motor starters)		35. Improving star-delta protection. (Overload and short circuit protection)		
	16. Application guide to lamp selection (Industrial pushbutton controls)		36. Does your CT measure up? (Selecting the correct current transformer)		
	17. Electrical surges can be		37. Is your copper flexible?(Flexible busbars)		
	expensive (Electrical surges) 18. Putting the PLC in control (advantages of the PLC)		38. Where did the 10 volts go? (world uniform voltages)		
Editorial content: - Please address all enquiries to:					

NHP Electrical Engineering Products Pty Ltd A.B.N. 84 004 304 812 www.nhp.com.au AUSTRALIA VICTORIA MELBOURNE 43-67 River Street Richmond VIC 3121 Phone (03) 9429 2999 Fax (03) 9429 1075 NEW SOUTH WALES SYDNEY 30-34 Day Street North, Silverwater NSW 2128 Phone (02) 9748 3444 Fax (02) 9648 4353 NEWCASTLE 575 Maitland Road Mayfield West NSW 2304 Phone (02) 4960 2220 Fax (02) 4960 2203 QUEENSLAND BRISBANE 25 Turbo Drive Coorparoo QLD 4151 Phone (07) 3891 6008 Fax (07) 3891 6139 TOWNSVILLE 62 Leyland Street Garbutt QLD 4814 Phone (07) 4779 0700 Fax (07) 4775 1457 ROCKHAMPTON 14 Robison Street Rockhampton QLD 4701 Phone (07) 4927 2277 Fax (07) 4922 2947 тооwоомва Cnr Carroll St & Struan Crt Toowoomba QLD 4350 Phone (07) 4634 4799 Fax (07) 4633 1796 CAIRNS 14/128 Lyons Street Bungalow QLD 4870 Phone (07) 4035 6888 Fax (07) 4035 6999 SOUTH AUSTRALIA ADELAIDE 36-38 Crovdon Road Keswick SA 5035 Phone (08) 8297 9055 Fax (08) 8371 0962 WESTERN AUSTRALIA PERTH 38 Belmont Ave Rivervale WA 6103 Phone (08) 9277 1777 Fax (08) 9277 1700 NORTHERN TERRITORY DARWIN 3 Steele Street Winnellie NT 0820 Phone (08) 8947 2666 Fax (08) 8947 2049 TASMANIA HOBART 2/65 Albert Road Moonah Tasmania 7009 Phone (03) 6228 9575 Fax (03) 6228 9757 NEW ZEALAND NHP Electrical Engineering Products (NZ) Limited 7 Lockhart Place Mt Wellington Auckland NZ Phone 64 9 276 1967 Fax 64 9 276 1992 476 St Asaph Street Linwood Christchurch NZ Phone 64 9 389 7604 Fax 64 9 389 7605 Version 6