

Exclusive Partner

TemBreak PRO

External Display for P Model SMART Moulded Case Circuit Breakers USER MANUAL

Version

1.1.0

Using this manual

Safety Precautions

Authorised Personnel Only

The product or system described in this documentation must be installed, operated and maintained by qualified personnel only. NHP or Terasaki accept no responsibility for the consequences of the use of this equipment by unqualified personnel.

A qualified person is one with the necessary skills and knowledge of the construction and operation of the installation of electrical equipment and has been trained to identify and avoid risks.

Appropriate use of NHP / Terasaki products

NHP / Terasaki products are intended to be used only for the applications described in the catalogue and technical documentation, which is dedicated to them. If products and components from other manufacturers are used, they must be recommended or approved by NHP or Terasaki. Appropriate use of NHP / Terasaki products during transport, storage, installation, assembly, commissioning, operation and maintenance is necessary to ensure safe operation and without any problems.

The permissible ambient conditions must be met. The information contained in the technical documentation must be observed.

Publication of responsibility

The contents of this document have been reviewed to ensure that the reliability of the information is correct at time of publication. NHP or Terasaki are not responsible for printing or damage resulting from errors. NHP or Terasaki reserve the right to make corrections and changes needed in subsequent edition.

Warnings and notes

This documentation contains safety instructions that you must follow for your personal safety and to prevent damage to property. Safety instructions, referring to your personal safety are reported in the literature by a safety alert symbol.

Safety warning symbols and the words below are classified according to the degree of risk.

WARNING: Indicates an imminently hazardous situation which, if it cannot be avoided, will result in death or serious injury.

WARNING: Indicates a potentially hazardous situation which, if it cannot be avoided, can result serious injury or death.

WARNING: Indicates a potentially hazardous situation which, if it cannot be avoided, may cause minor or moderate injury.

Notice: Indicates a warning of property damage and can also indicate important operating and especially useful information on the product, that it should pay particular attention to efficient and safe operation.

Exclusive

Summary of Changes

This section highlights the details of changes made since the previous issue of this document.

The versioning convention used to track changes in this document follows the structure Vx.y.z where:

x: Major revision, where extensive changes are made which is generally incompatible with the previous version. Such changes may include new products and/or features, or removal of information which is no longer relevant or applicable to the previous version

y: Minor revision, where changes made do not change the overall scope of the previous version, but may include additional information which complements or corrects the previous version, or provides additional clarity on an existing topic.

z: Patch version, where small changes are made to correct minor errors or adjust existing text, charts, figures and/or images, and which do not add or remove information from the previous version. Example changes may include spelling corrections, image re-sizing and adjustments, updated images, etc.

Version	Publication date	Changes	Ву
V 1.0.0	19-Apr-2021	Initial release	D.NAT
V 1.1.0	In-Progress	Fixed typo on TPED part number, aligned Annex structure with another TBP User Manuals	N.ALEX

Table of Contents

Using this manual Safety Precautions
Summary of Changes
Table of Contents
Introduction
Who Should Use This Manual?
Additional Resources
Terminology and Abbreviations
Product Information
Part Numbers
TPED
CIP-R.19 cable
Product Data
Additional Certificates
Pluge & Ports
P CE
TPED
Installation
Mechanical Installation
Power Supply
CIP adapter cable
Navigation
TPED Overview
Main Menu
Protection Settings
Measure
Alarms
Configuration
Information
Alarms
Alarm Indication
Priority Level
Clearing alarms
System Alarms
Trin Alarms
PTA (Pro-Trin Alarm)
Custom Alarms
Custom alarm parameters
Positive activation
Negative activation
Foundation
Time delaye
Cuetom alarme liet
$\Omega \Delta C$ (Ontional Alarm Contact)
Optional alarms List

Write Protection	35
Remote Write Authorization	35
Password Management	36
Configuration	37
Starting the TPED for the First Time	37
Passwords	38
Password Entry	38
Password Change	39
Protection Settings	40
Measurements Display	41
Selecting a Favourite	41
Setting a Custom Alarm	42
Troubleshooting	43
ANNEX	44
Dimensions	Error! Bookmark not defined.
Connection Diagram	45

Introduction

The TemView *PRO* (**TPED**) enables remote and expanded configuration of the NHP/Terasaki TemBreak *PRO* Smart Energy (**P_SE**) MCCBs. The TPED allows access to extended information including instantaneous and historic energy and power measurements, status indicators, and detailed trip and alarm history, as well as reading and writing of configuration and protection settings external to the MCCB via an easy-to-use interface outside the panel or switchboard.

This user manual describes the TPED features and instructions for use, and provides information for commissioning and configuring.

Who Should Use This Manual?

This manual aims to provide users, electricians, panel builders and maintenance personnel, with the technical information required for commissioning and operation of the NHP / Terasaki TPED.

Users of this document must have at minimum a basic understanding of the following:

- Power distribution and reticulation
- Circuit protection devices
- Fault currents
- Arc faults
- Temperature rise and thermal derating of switchgear

Additional Resources

The following resources contain additional information which should be read in conjunction with this document.

Resource	Description
NHP/Terasaki TemView PRO Installation Instructions	Information on installing, mounting, and wiring the TemView PRO external display.
TemView_PRO-IN-001-EN	
NHP/Terasaki TemBreak PRO P_SE Installation Instructions	Information on installing, mounting, and wiring the TemBreak PRO Smart Energy
P160 3 SE-IN-001-EN	MCCB.
P160 4 SE-IN-001-EN	
P250 3 SE-IN-001-EN	
P250_4_SE-IN-001-EN	
P400 3 SE-IN-001-EN	
P400_4_SE-IN-001-EN	
P630 3 SE-IN-001-EN	
P630_4_SE-IN-001-EN	
NHP/Terasaki TemBreak PRO P_SE MCCB User Manual	Reference guide for the TemBreak PRO Smart Energy MCCB including information for
P_SE-UM-001-EN	installation, wiring, commissioning, configuration, and troubleshooting.

Terminology and Abbreviations

Abbreviation	Description	Abbreviation	Description	
ACP	Auxiliary Communications port: Plug for Smart auxiliary / alarm contact block	МССВ	Moulded Case Circuit Breaker	
AL	Alarm: An auxiliary contact indicating trip status	microSD	SD Micro Secure Digital	
ASCII	CII American Standard Code for Information Interchange MIP Maintenance Interface Port: Plug for to CCR testing, servicing, tools		Maintenance Interface Port: Plug for temporary connection to OCR testing, servicing, and maintenance tools	
AX or AUX	Auxiliary: Auxiliary contact indicating open / closed	Ν	Neutral	
BE	Basic Electronic Trip Unit (dial type, LSI and LSIG)	NP	Neutral Protection	
CCW	Connected Components Workbench software	OAC	Optional Alarm Contact: Connection connector optional alarm output contact	
CIP ¹²	 ¹ Communication Interface Port: Plug for control power and data for use with the TPED and TPCM ² Common Industrial Protocol 	OCR	Over Current Relay	
CRC	Cyclic Redundancy Check – error-detecting code used at the end of each Modbus message	P or PTA	Pre-trip Alarm	
dec	Decimal (base-10) numbering system	PDU	Protocol Data Unit	
DINT	Signed Double Integer datatype (4 bytes or 32 bits in length)	PELV	Protected Extra Low Voltage (earthed system)	
EIPM	TemBreak PRO Ethernet/IP Module	РТА	Pre-Trip Alarm: is a programmable output contact to advise when a trip may be imminent.	
FF	Fixed Thermal and Fixed Magnetic	RTU	Remote Terminal Unit	
FM	Fixed Thermal and Adjustable Magnetic	S or STD	Short Time Protection	
G or GF	Ground Fault Protection	SE	Smart Energy Trip Unit	
hex	Hexadecimal (base-16) numbering system	SELV	Separated Extra Low Voltage	
I or INST	Instantaneous Protection	SN	Solid Neutral	
IEC	International Electrotechnical Commission	SSID	Service Set Identifier (name of the Wi-Fi wireless network)	
IEEE	Institute of Electrical and Electronics Engineers	STR	String datatype	
lg	Ground Fault Protection Current	TCP	Transmission Control Protocol	
li	Instantaneous Protection Current	TF	Adjustable Thermal and Fixed Magnetic	
In	Rated Current	THD	Total Harmonic Distortion	
In	Neutral Protection Current	ТМ	Adjustable Thermal Magnetic	
INT	Signed Integer datatype (2 bytes or 16 bits in length)	TPCM	TemCom PRO Communication Module	
IP	International Protection (Ingress Protection)	TPED	TemView PRO External Display	
l _r	Long Time Protection Current	tr	Long Time Delay or Long Time Time	
l _{sd}	Short Time Protection Current	t _{sd}	Short Time Delay or Short Time Time	
I _{tsp}	Thermal Self Protection Current	t _{tsp}	Thermal Self Protection Time	
L or LTD	Long Time Protection	UDINT	Unsigned Integer (2 bytes or 16-bits in length)	
LCD	Liquid Crystal Display (LCD)	UINT	Unsigned Integer (2 bytes or 16 bits in length)	
LED	Light Emitting Diode	ULINT	Unsigned Long Integer datatype (8 bytes or 64 bits in length)	
LINT	Signed Long Integer datatype (8 bytes or 64 bits in length)	URLs	Uniform Resource Locator (address of an Internet website)	
LSI	Long Time, Short Time and Instantaneous Protection	WORD	2 bytes or 16-bits of data	
LSIG	Long Time, Short Time, Instantaneous and Ground Fault Protection	ZSI	Zone Selective Interlocking (zone selectivity)	

Product Information

The TemView *PRO* (TPED) is an optional backlit LED external display which permits reading and writing data of the P_SE MCCB OCR, including protection settings, energy measurements, alarms, and event logs. It is used where direct access to the embedded display of the P_SE MCCB is not permitted, or otherwise enclosed and inaccessible.

The TPED easily mounts on a panel allowing for monitoring and configuration of the connected P_SE MCCB without requiring direct access to the MCCB or inside of the enclosure or panel. A CIP adapter cable is required to connect to the P_SE MCCB, and external 24Vdc supply is required to be feed either to an optional accompanying TemCom *PRO* communications module (TPCM) or with the use of the **TPPHQTT1_0H** cable for direct wiring of power supply.

The display is sealed to obtain an IP65 protection when installed in a suitable enclosure, such as a panel or switchboard. The LCD display is backlit for easy reading in low light conditions.

TPED Function	View	Modify
Protection Settings	\checkmark	\checkmark
Measurements	\checkmark	-
Alarms	\checkmark	\checkmark
Configuration	\checkmark	\checkmark
Historical event log	\checkmark	_
Circuit breaker identification data	\checkmark	-

Part Numbers

TPED

Part Number	Description
TPED00N	External monitor and configurator for P_SE MCCBs

CIP-RJ9 cable

The physical connection between the TPED or TPCM and the P_SE MCCB is via the CIP adapter cable, which provides both the proprietary communications link and auxiliary power supply to the OCR.

The CIP adapter cable is comprised on one end a CIP connector which plugs into the CIP socket on the MCCB, and the other end either RJ9 plug for connection to the TPED or TPCM.

These are pre-wired adapters which are available in various lengths as required.

Connector	Part number reference	Compatible MCCB	Length
	TPPHQTT330H – CIP to RJ9	P160 / P250	0.5 m
	TPPHQTT340H – CIP to RJ9	P160 / P250	1.5 m
	TPPHQTT350H – CIP to RJ9	P160 / P250	3 m
	TPPHQTT360H – CIP to RJ9	P160 / P250	5 m
	TPPHQTT370H – CIP to RJ9	P160 / P250	10 m
	TPPHQTT140H – CIP to free wire	P160 / P250	1.2m
CIP	(un-terminated end for hardwired 24V dc to MCCB)		1.2111
CIP	TPPHQTT430H – CIP to RJ9	P400 / P630	0.5 m
	TPPHQTT440H – CIP to RJ9	P400 / P630	1.5 m
	TPPHQTT450H – CIP to RJ9	P400 / P630	3 m
	TPPHQTT460H – CIP to RJ9	P400 / P630	5 m
	TPPHQTT470H – CIP to RJ9	P400 / P630	10 m
	TPPHQTT160H – CIP to free wire	P400 / P630	1.2m
	(un-terminated end for hardwired 24V dc to MCCB)		1.2111

Product Information

Product Data

Technical Data	
Dimensions	97 x 97 x 46 mm (27mm behind the door)
Door cut-out	92 x 92 mm
Screen size	37 x 78 mm
Viewing backlight	Backlit blue
Temperature operation	-10 ° C + 55 ° C
Pollution Category	
Degree of protection	IP65 (rear is IP20)

Terminals/Plugs	Ratings	Notes
Power Supply	Voltage - 24 V DC (+/- 30%) Current – 85 mA	Supplied via CIP-RJ9 cable from P_SE MCCB
Micro USB	_	For future firmware management.

Additional Certificates

Plugs & Ports

P_SE

The TemBreak *PRO* Smart Energy (P_SE) MCCB is equipped with specific connectors for connecting communication devices and accessories. The Communication Input Port (**CIP**) are used to connect the TPCM to the MCCB, see below for their locations.

Port		Description
MIP	TEST PH (O)	Maintenance Interface Port – for temporary connection to OCR testing, servicing, and maintenance tools. Located to the right of the embedded display front cover.
CIP		Communications Input Port – Multiple concurrent CIP connections are possible and are used to connect the TPED, an external 24V dc power supply and/or the TPCM as required. Located under the front cover.

TPED

The TPED includes the following ports and connections.

Port		Description
RJ9	Display	Connection port for TPPHQTT_CIP adapter cable assembly for communication between a P_SE MCCB and TPED
Micro USB		For future firmware management.

Installation

Mechanical Installation

Installation

Power Supply

An external 24 Vdc supply is required for the TPED, which is delivered via the CIP adapter cable to the P_SE MCCB. The MCCB in turn requires the external power supply connection, which is connected to the MCCB in one of two ways:

- Direct connection to MCCB with via CIP adapter cable TPPHQTT140H (P160 / P250), or TPPHQTT160H (P400 / P630)
- Connection via the TPCM provided power supply.

Notice: For power supply connection via the TPCM, refer to the TPCM Installation instructions and user manual

The external 24V dc power supply must be capable of delivering the necessary maximum current of the OCR and any connected accessories.

Trip unit / accessories	Current consumption @ 24V dc nominal
P_SE OCR	60 mA
TPED	85 mA
TPCM	40 mA

Installation

Power Supply

CIP adapter cable

Below are the steps for direct connection of power supply to the TPED via the OCR via CIP adapter cable:

- TPPHQTT140H (P160 / P250), or
- TPPHQTT160H (P400 / P630).

Power Supply

CIP adapter cable

Navigation

TPED Overview

	Component	Description	
1	Screen	Backlit monochrome LCD	
2	Signalling LED	Alarm – Communication - Ready	
3	RJ9 port	At the rear of the display	
4	Function "Fn" key	Function dependent on the menu displayed	
5	Left / OK / Right keys	Left and Right keys to navigate to the left and right in the menus. OK key: Confirm an action.	
6	Back key	Go back or exit menu. Return to Default Display by pressing and holding	
7	Up / Down keys	Up and Down keys to navigate up and down the menus	

Main Menu

There are 5 main menus and a pop-up menu.

	Menu	Description
1		Protection: View and modify the LSI(G) protection settings.
2	(1))	Measurement: View the extended detailed real-time and historic measurements values
3		Alarm: View and modify alarms for various types of events based on system status and live monitoring of parameters, including custom alarms, PTA and Optional Alarm (OAC) contacts.
4		Configuration: View and modify MCCB measurement and display settings, and reset of historical measurement data, alarms and events.
5	Í	Information: View the status and identification information of the MCCB and historic trip and alarm logs include SMART Auxiliary counters.
6		Pop-up unlock menu: Use the Function button to unlock.

NHP

Protection Settings

LSI(G) protection settings which are viewed and modified via the TPED are as follows:

Notice: Refer to the P_SE User Manual for further information on protection settings and particular detail on settings dependent on specific MCCB models and ratings.

	Menu	Description	Settings	Description
				LTD – Long Time Delay protection threshold (current rating)
			Ir	Setting Dependent on MCCB Ratings
			+	LTD – Long Time Delay (time delay)
			lr	0.5 / 1.5 / 2.5 / 5 / 7.5 / 9 / 10 / 12 / 14 / 16
			اس	STD – Short Time Delay protection threshold (current)
1	ISI	I SI Protection Settings	ISU	Setting Dependent on MCCB Ratings
1		Lor rolection settings	ted	STD – Short Time Delay (time delay)
			tsu	50 / 100 / 200 / 300 / 400 ms
			12+	I ² t function for STD
			11	OFF / ON
			L.	INST – Instantaneous protection threshold (current)
			1	Setting Dependent on MCCB Ratings
		Thermal Memory / Hot-Cold start mode	_	The OCR models the heating and cooling of electrical conductors, which allows the MCCB to
2	15			protect conductors against current overload considering the thermal state of these conductors.
		Neutral Protection	_	Neutral protection uses the long-time delay, short time delay and instantaneous protection
3	N			parameters.
				50% / 100% / OFF
				Ground Fault protection is protection against high strength insulation / earth faults. Ground fault
4	Gnd	Ground Fault Protection	—	is available with Electronic TemBreak PRO 3 and 4 pole MCCBs as standard. GF is
				OFF / ON
				Zone Interlocking allows the MCCB to coordinate with upstream ACBs or MCCBs and
_	701	7		downstream MCCBs to have the circuit breaker closest to the fault trip while the other
5	231	Zone Interlocking	-	circuit breakers wait for this circuit breaker to open circuit.
				OFF / ON
		L	4	

Measure

Detailed real-time and historic measurements which are viewed and assessable via the TPED are as follows.

Notice: Refer to the P_SE User Manual for further information on measurements including calculation and acquisition methods.

	Menu	Description	Measurements	Designator / Description
			Phase and neutral	l ₁ , l ₂ , l ₃ ; l _N
			Arithmetic mean	$I_{avg} = [I_1 + I_2 + I_3] / 3$
			Maximum	I _{max} of I ₁ , I ₂ , I ₃ , I _N
1		Current	Minimum	Imin of I1, I2, I3
•		ourient	Ground / Earth	lg
			Imbalance per phase	I1 Unb, I2 Unb, I3 Unb; IN Unb with respect to Iavg
			Maximum instantaneous Imbalance	I _{max Unb} of I _{1 Unb} , I _{2 Unb} , I _{3 Unb} , I _{N Unb}
			Maximum since last reset	Max. of each I ₁ , I ₂ , I ₃ ; I _N , I _{max} , I _{min} , I _g
		Voltage Phase to Phase	Phase-phase	U ₁₂ , U ₂₃ , U ₃₁
			Arithmetic mean	$U_{avg} = [U_{12} + U_{23} + U_{31}] / 3$
2			Maximum	U _{max} of U ₁₂ , U ₂₃ , U ₃₁
2			Instantaneous imbalance per phase	% U _{avg}
			Maximum imbalance	U _{max Unb} , V _{max Unb}
			Maximum since last reset	Max. of each U12, U23, U31, Umax, Umin, Uavg,
			Phase to neutral	V1n, V2n, V3n
			Arithmetic mean	$V_{avg} = [V_{1N} + V_{2N} + V_{3N}] / 3$
3	V	Voltage	Instantaneous maximum	V _{max} of V _{1N} , V _{2N} , V _{3N}
Ŭ		Phase to Neutral	Imbalance per phase	% V _{avg}
			Maximum imbalance	Vmax Unb
			Maximum since last reset	Max. of each V_{1N} , V_{2N} , V_{3N} , V_{max} , V_{min} , V_{avg}

Measure

	Menu	Description	Measurements	Designator / Description
			Active	P1, P2, P3, Ptot
			Reactive	Q1, Q2, Q3, Qtot
4	Р	Power	Apparent	S1, S2, S3, Stot
			Maximum since last reset	Max. of each P1, P2, P3, Ptot Max. of each Q1, Q2, Q3, Qtot Max. of each S1, S2, S3, Stot
		Demand Power Maximums	Active, reactive, apparent power	P1 Dmd, P2 Dmd, P3 Dmd, Ptot Dmd Q1 Dmd, Q2 Dmd, Q3 Dmd, Qtot Dmd S1 Dmd, S2 Dmd, S3 Dmd, Stot Dmd
5	D		Maximum power since the last reset	$\begin{array}{l} \mbox{Max. of each P_1 Dmd, P_2 Dmd, P_3 Dmd, P_{tot Dmd}$ \\ \mbox{Max. of each Q_1 Dmd, Q_2 Dmd, Q_3 Dmd, Q_{tot Dmd}$ \\ \mbox{Max. of each S_1 Dmd, S_2 Dmd, S_3 Dmd, S_{tot Dmd}$ \\ \end{array}$
			Integration interval sliding, fixed, or synchronised by Modbus	Adjustable from 5 to 60 minutes in increments of one minute
<u> </u>	PF	Power Factor	Power Factor	PF ₁ , PF ₂ , PF ₃ , PF _{tot}
б			Displacement Power Factor	Cos\u03c641, Cos\u03c62, Cos\u03c643, Cos\u03c6tot
7	THD	Total Harmonic Distortion	THD voltage	THD _{U12} , THD _{U23} , THD _{U31} THD _{V1N} , THD _{V2N} , THD _{V3N}
			THD current	THD11, THD12, THD13, THD1max
			Consumed	Ea In, Er In
8		Energy	Produced	Ea Out, Er Out
			Total apparent	Es
			Frequency	f
9	F	Network	Quadrant	1 st , 2 nd , 3 rd , 4 th
			Phase rotation (sequence)	1-2-3, 1-3-2

NHP

Measure

Alarms

View and modify alarms for various types of events based on system status and live monitoring of parameters, including custom alarms, PTA and Optional Alarm (OAC) contacts.

	Menu	Description	Measurements	Designator / Description		
1	Custom	Custom Alarms	1-12 Custom Alarms	See Custom Alarms Section		
0	DroTrip	Des Tris Aleres Ostilises	Threshold	60 - 95 % (increments of	5%)	
2	Premp	Fie-mp Alaim Settings	Delay	5 – 80 seconds (incremen	ts of 5s)	
		Trip Priorities	Long Time	None / Low / Medium / Hig	gh	
			Short Time	None / Low / Medium / Hig	gh	
3	Trip		Instantaneous	None / Low / Medium / Hig	gh	
			Ground	None / Low / Medium / High		
			Trip Test	None / Low / Medium / High		
		OAC Settings		None	Custom Alarm 2	Custom Alarm 8
			Assignment	Over Temperature	Custom Alarm 3	Custom Alarm 9
				External Neutral Unplugged	Custom Alarm 4	Custom Alarm 10
4	OAC			Autotest Failure	Custom Alarm 5	Custom Alarm 11
				Pre-Trip Alarm I _r	Custom Alarm 6	Custom Alarm 12
				Custom Alarm 1	Custom Alarm 7	
			Reset Mode	Automatic / Latching		

Configuration

View and modify MCCB measurement and display settings, and reset of historical measurement data, alarms and events.

	Menu	Description	Measurements	Designator / Description
			Brightness	20 / 40 / 60 / 80 / 100%
1		Display Settings	Contrast	0 / 25 / 50 / 75 / 100%
		Display Settings	Display Mode	ON / OFF
			Language	English / Japanese / French / German / Italian / Spanish / Portuguese / Chinese
			Date	DD / MM / YYYY
2		Date / Time	Time	Adjustable Hours and Minutes Displays Hours / Minutes / Seconds
3		Password	Password Setting	4 Digit Code
			Phase Sequence	1, 2, 3 / 1, 3, 2
			Topology	3-Pole-3-Wire / 3-Pole-4-Wire / 4-Pole-4-Wire
			P Sign Convention	Plus / Minus
4	(' ' ')	Calculation Settings	Calculation Convention	Arithmetic / Vector
	$\overline{}$		PF Sign Convention	IEEE / IEC
			On Demand Mode	Fixed / Sliding / Bus Sync
			On Demand Duration	5 – 60 minutes (increments of 1 min)

NHP

Configuration

	Menu	Description	Measurements	Designator / Description
			Reset All Min / Max	
			Reset Current Min / Max	
			Reset Voltage Min / Max	
			Reset Power Min / Max	
5	MIN	Reset	Reset PF Min / Max	Yes / No
			Reset Frequency Min / Max	
			Reset THD Min / Max	
			Reset On Demand Min / Max	
			Reset Energies Min / Max	
		Erase Alarms	Erase All Alarm vents	
6			Erase Low Priority	Yee /No
0			Erase Medium Priority	Tes / No
			Erase High Priority	
			Erase All Trip Events	
7		Frase Events	Erase Low Priority	Yee /No
'			Erase Medium Priority	res / No
	-		Erase High Priority	

Information

View the status and identification information of the MCCB and historic trip and alarm logs include SMART Auxiliary counters.

	Menu	Description	Description	Information
			Range Name	TemBreak PRO P(n)
			In	-
			Number of Poles	3/4
1	MCCB	MCCB Information	Description 1	
			Description 2	
			Production Date	Week / Year
			MCCB Serial Number	
			AUX Status	ON / OFF
			Alarm Status	ON / OFF
			AUX Counter	Number
2	мссв	Contact Status	Alarm Counter	Number
_			PTA Output	Active / OFF
			OAC Output	Active / OFF
			Operating Time of MCCB	Days
3		Alarm History	_	Past Alarms Listed
4	G	Trip Events	_	Trip Type DD / MM / YYYY – HH:MM
5		Display Serial Number	_	TPED00NA

NHP

Alarm Types

The TPED allows alarming from the P_SE OCR for various types of events based on system status and live monitoring of parameters. There are three types of alarms available on the TPED based on functionality and configurability.

- System alarm: Correspond to predefined events internal to the OCR.
- Trip alarm: Provide warning about trip events and guide diagnostics towards the cause of the trip.
- Pre-Trip alarm (PTA): Provides a warning about the imminent trip risk due to a current overload. It is associated with the PTA output contact.
- **Custom alarm:** Used to monitor and be alerted to the measurements taken by the SMART trip unit.

Notice: PTA and System alarms are only visible on the TPED when assigned to the OAC, however, only one at a time is possible. Refer to <u>OAC (Optional Alarm Contact)</u> section.

Alarm Indication

Alarms are indicated on the TPED via an alarm LED, alarm pop-up, and/or alarm notification icon. The indication method is dependent on the alarm priority level, which may be factory assigned, or is user configurable.

	Component
1	Alarm LED
2	Alarm pop-up
3	Alarm notification icon

Display	Description
	Trip alarm
	Custom alarm
	Appears when the active alarm has been assigned to the OAC output contact. Refer to <u>OAC (Optional Alarm Contact)</u> section and P_SE User Manual for more information.

Priority Level

Each trip and custom alarm is associated with it a priority level, which determines how each alarm is displayed and logged.

Notice: Custom alarms are only visible using the TPED or TPCM, however, the P_SE OCR will still monitor and log any prior configured alarms without either TPED or TPCM connected.

Upon reconnection to a TPED or TPCM, the custom alarm trip history log will be populated and can be accessed.

The characteristics of each priority are provided in the below table:

Priority	Active alarm list	Alarm history log	TPED	TPED	TPED
			Alarm LED	Alarm notification icon	Alarm pop-up
None	\checkmark	—	1	_	_
Low	\checkmark	\checkmark	1	—	_
Medium	\checkmark	\checkmark	\checkmark	\checkmark	-
High	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Priority None:	Active alarms will not produce any notification, and will not be stored in the alarm history log of either TPED or TPCM. The respective alarm status will still display as active or inactive in the custom alarm configuration list of the TPED, and the Custom Alarms Status register of the TPCM.
Priority Low:	Active alarms behave in the same way as Priority None alarms, but in addition will be logged in the alarm history log which is accessible on both TPED and TPCM. Both alarm activation and deactivation events will be logged (as applicable), complete with the details of the alarm type and event time.
Priority Medium:	Active alarms behave in the same way as Priority Low alarms, but in addition will produce a notification on the TPED in the form of a flashing red alarm LED on the front, and an alarm notification icon on the lower right of the display. Pressing the "Fn" key under the alarm icon will open a pop-up display to view the details of active alarms and acknowledge deactivated alarms.
Priority High:	Active alarms behave in the same way as Priority Medium alarms, but in addition will automatically produce a pop-up notification on the TPED without requiring the user the press the "Fn" key under the alarm icon.

Clearing alarms

High priority alarm notifications must be cleared, which is done by pressing the "OK" key whilst the alarm notification is displayed.

	Action	Key		
1	Clear the alarm - The notification disappears.	\$	ок	>

Notice: After clearing, the alarm may still be active if the cause has not been eliminated. In this case, the alarm window may be visible on the list of active alarms.

System Alarms

System alarms are produced as a result of at least one of the following pre-defined events, which are not user configurable:

- Internal OCR error
- OCR temperature alarm
- Disconnection of neutral

	otice: PTA and System alarms are only visible on the TPED when assigned to the OAC, however, only one at ime is possible. Refer to <u>OAC (Optional Alarm Contact)</u> section.
Internal OCR error:	The P_SE OCR constantly monitors its protection function. In the event of an operating fault concerning the electronics of the OCR, the <i>Internal trip unit error</i> alarm is activated and the OCR Status LED flashes orange.
OCR Temperature:	The P_SE OCR constantly monitors its internal temperature. In the event that the temperature exceeds 105°C, the OCR temperature alarm is activated and a pop-up appears on the P_SE embedded display and TPED where used. The alarm features a lower hysteresis threshold, which keeps the alarm active until the internal temperature of the OCR drops below 100°C.
Disconnection of Neutral:	Only available on MCCB's with Neutral reference (3Ph+N). This alarm is activated if the neutral pole is disconnected and if this alarm has been assigned to the OAC output contact. A disconnected neutral in the network supply may produce a dangerous increase in Phase-Neutral voltage in unbalanced 3-phase systems. This sustained overvoltage can result in damage to equipment and insulation and poses a safety risk to personnel. Neutral disconnection detection is based on monitoring a threshold Ph-N overvoltage of approximately 275 Vac with a time delay as defined by standard EN 50550 for a rated Ph-N voltage of 230 V.

Trip Alarms

The trip alarms indicate a trip type and provide information about the trip event values.

- The possible trips alarms are:
 - Trip related to LTD protection
 - Trip related to STD protection
 - Trip related to INST protection
 - Trip related to GF protection
 - Trip related to OCR testing, servicing, and maintenance tools

The following information is provided in the case of the message for a trip alarm:

- Trip cause
- Phase concerned by the fault (only for LTD, STD and INST related trips)
- Fault current value (only LTD, STD, INST and GF)

NHP

PTA (Pre-Trip Alarm)

The Pre-Trip Alarm permits monitoring and early warning of overload conditions prior to an actual LTD trip. The PTA setting is defined by two parameters which define the Pre-trip warning and Pre-trip Alarm zones and thus the behaviour of the PTA contact and status LED on the P_SE MCCB:

- PTA current threshold Ip: Threshold expressed as a percentage of Ir and is adjustable from 60...95%
- PTA time delay tp : Expressed as a percentage of tr and is adjustable from 5...80%

The I_p current threshold defines the lowest current that could be considered to be within the Pre-trip warning and Pre-trip alarm zones. The t_p time delay threshold defines the shortest time in which the Pre-trip alarm will activate. The time delay for PTA follows the LTD protection curve and varies with current as shown in the figure below. Lower currents in the Pre-trip zones will activate the alarm with a longer delay than higher currents.

The behaviour of the various pre-trip zones is illustrated in the figure and table below.

If the load current is less than the I_P current threshold, then this is considered the normal load zone, and the PTA LED and contact are unaffected and remain OFF and OPEN, respectively.

As the load current increases to at or above I_p, the Pre-trip warning zone is entered, and is indicated by the PTA LED illuminating FLASHING orange. Whilst in the pre-trip warning zone, the load current is monitored and characterised with thermal imaging by the OCR.

If the current remains above I_p for an extended period of time, the Pre-trip Alarm zone is entered, and is indicated by the PTA LED illuminating SOLID orange, and the PTA contact activating CLOSED. The time required for the Pre-trip Alarm to activate is dependent on the current value and the t_p parameter set, as this follows the LTD protection curve.

Notice: The use of the PTA contact requires the connection of the OAC/PTA cable to the PTA port located on the external left-hand side of the P_SE MCCB. Refer to the P_SE User manual for details on the OAC/PTA cable.

Notice: PTA and System alarms are only visible on the TPED when assigned to the OAC, however, only one at a time is possible. Refer to <u>OAC (Optional Alarm Contact)</u> section.

Pre-trip zone	Current I vs. I _p	P_SE PTA LED status	P_SE PTA Contact status		
Normal load	< p	OFF READY	OPEN		
Pre-trip Warning	$ \ge _p$	FLASHING READY	OPEN		
Pre-trip Alarm	$ \ge _p$	SOLID READY	CLOSED		

Custom Alarms

Custom alarms make it possible to produce alarms based specific events and measurements made by the P_SE OCR. They are only available to be configured and displayed using the TPED and/or TPCM in conjunction with the P_SE MCCB.

Up to 12 custom alarms may be individually configured for a single P_SE OCR, with each used to monitor a single event of measurement.

Custom alarms may also be assigned to the OAC (Optional Alarm Contact) to provide a physical output when the respective custom alarm has been activated. Refer to OAC (Optional Alarm Contact) section for more information.

Notice: Only one alarm may be assigned to the OAC at any one time. This includes only one of PTA, System or Custom alarms. Refer to <u>OAC (Optional Alarm Contact)</u> section.

A custom alarm is defined through the following parameters:

- Measurement monitored
- Activation threshold
- Deactivation threshold
- Activation time delay
- Deactivation time delay
- Priority level

Custom alarm parameters

Configuration of custom alarm types, pick-up and drop-out thresholds and time delays can be made using the TPED and are configured to activate under specific conditions, which, depending on the event or measurement type may include one or more of the following parameters:

- Pick-up threshold
- Pick-up time delay
- Drop-out threshold
- Drop-out time delay
- Equivalent value

The pick-up threshold in conjunction with its time delay determine the value in which the custom alarm is activated, whereas the drop-out threshold is the value which de-activates the alarm. One may be set to a value higher or lower than the other, which determines whether the alarm activation is positive or negative with respect to the change in the measurement value.

Custom Alarms

Positive activation

In the case of a positive activation, the alarm is activated when the monitored value increases towards the pick-up threshold. This occurs when the pick-up threshold is set to a higher value than the drop-out threshold.

Symbol	Description
S1	Pick-up threshold
S2	Drop-out threshold
T1	Pick-up time delay
T2	Drop-out time delay

Negative activation

In the case of a negative activation, the alarm is activated when the monitored value decreases towards the pick-up threshold. This occurs when the pick-up threshold is set to a lower value than the drop-out threshold.

Symbol	Description
S1	Pick-up threshold
S2	Drop-out threshold
T1	Pick-up time delay
T2	Drop-out time delay

- -

Custom Alarms

Equivalent value activation

For the equal value activation, the alarm is activated when the value measured is equal to the configured value. The activation threshold is the same as the activation value.

Symbol	Description
S1	Pick-up value
T1	Pick-up time delay
T2	Drop-out time delay

Custom Alarms

Time delays

Custom alarms are activated once the pick-up threshold has been reached and the configured pick-up time delay has elapsed. Likewise, custom alarms are deactivated after the drop-out threshold is reached and the drop-out time delay has elapsed. Both pick-up and drop-out time delays are independently configurable, from a minimum 1 second to maximum 3000 seconds.

The time delays are provided as cumulative counters based on the time elapsed, which increments as the measured value reaches or exceeds the threshold value, and decrements if the measured value drops below the threshold value. Activation and deactivation of the respective custom alarm requires the time-delay counter to reach the configured time delay.

Pick-up time delay: For the activation of a custom alarm, the pick-up time delay counter:

- Increases by 1 per second when the pick-up threshold value is met or exceeded.
- Decreases by 1 per second if the pick-up threshold value is not met and the cumulative elapsed time is not reached.
- Resets to 0 when the cumulative time delay is reached and custom alarm is activated.

Drop-out time delay: For the deactivation of a custom alarm, the drop-out time delay counter:

- Increases by 1 per second when the drop-out threshold value is met or exceeded.
- Decreases by 1 per second if the drop-out threshold value is not met and the cumulative elapsed time is not reached.
- Resets to 0 when the cumulative time delay is reached and custom alarm is activated.

If an alarm is reconfigured using the TPED or TPCM whilst a custom alarm time delay counter has begun, the counters are reset to 0.

Example: A custom alarm is set to a positive activation pick-up threshold of 280 V for an overvoltage measurement of V1N. The pick-up time delay is set to 4 seconds. The drop-out threshold value is set at 250 V and the drop-out time delay at 2 seconds.

Symbol	Meaning
S1	Pick-up threshold
S2	Dop-out threshold
T1	Pick-up time delay
T2	Drop-out time delay

Custom Alarms

Custom alarms list

Interview Unit Res Min. value Max. value Unit Res Min. value Max. value Max. value Max. value Max. value Min. value Max. value Orthom V// 1 Over Instantaneous Current [It] A 0.1 8 6300 sec 1 1 3000 // // 4 Over Instantaneous Current [It] A 0.1 8 6300 sec 1 1 3000 // // 5 Over Instantaneous Current [It] A 0.1 8 6300 sec 1 1 3000 // // 6 Under Instantaneous Current [It] A 0.1 8 6300 sec 1 1 3000 // // 9 Under Instantaneous Current [Ito] A </th
0 No assignment -
1 Over Instantaneous Current [I ₁] A 0.1 8 6300 sec 1 1 3000 ✓ ✓ 2 Over Instantaneous Current [I ₂] A 0.1 8 6300 sec 1 1 3000 ✓ ✓ 3 Over Instantaneous Current [I ₂] A 0.1 8 6300 sec 1 1 3000 ✓ ✓ 4 Over Instantaneous Current [I ₂] A 0.1 8 6300 sec 1 1 3000 ✓ ✓ 5 Over Instantaneous Current [I ₂] A 0.1 8 6300 sec 1 1 3000 ✓ ✓ 6 Under Instantaneous Current [I ₂] A 0.1 8 6300 sec 1 1 3000 ✓ ✓ 9 Under Instantaneous Current [I ₂] A 0.1 8 6300 sec 1 1 3000 ✓ ✓ ✓
2 Over Instantaneous Current [l ₂] A 0.1 8 6300 sec 1 1 3000 √ √ 3 Over Instantaneous Current [l ₂] A 0.1 8 6300 sec 1 1 3000 √ √ 4 Over Instantaneous Current [l ₂] A 0.1 8 6300 sec 1 1 3000 - √* 5 Over Instantaneous Current [l ₂] A 0.1 8 6300 sec 1 1 3000 √ √ 6 Under Instantaneous Current [l ₂] A 0.1 8 6300 sec 1 1 3000 √ √ 7 Under Instantaneous Current [l ₂] A 0.1 8 6300 sec 1 1 3000 √ √ 8 Under Instantaneous Current [l ₃] A 0.1 8 6300 sec 1 1 3000 √ √ 9 Under Instantaneous Current [l ₃] X l ₈ 0.1% 5% 60% sec
3 Over Instantaneous Current [ls] A 0.1 8 6300 sec 1 1 3000 √ √ 4 Over Instantaneous Current [ls] (*P MCCB Only) A 0.1 8 6300 sec 1 1 3000 ~ √* 5 Over Instantaneous Current [ls] A 0.1 8 6300 sec 1 1 3000 √ √ 6 Under Instantaneous Current [ls] A 0.1 8 6300 sec 1 1 3000 √ √ 7 Under Instantaneous Current [ls] A 0.1 8 6300 sec 1 1 3000 √ √ 9 Under Instantaneous Current [ls] A 0.1 8 6300 sec 1 1 3000 √ √ 9 Under Instantaneous Current [ls] X lsg 0.01 0.1 1 sec 1 1 3000 √ √ 10 Ground Current x lsg 0.01 0.1 8 6300 sec<
4 Over Instantaneous Current [In] (*4P MCCB Only) A 0.1 8 6300 sec 1 1 3000 ./* 5 Over Instantaneous Current [In] A 0.1 8 6300 sec 1 1 3000 ./ ./. 6 Under Instantaneous Current [In] A 0.1 8 6300 sec 1 1 3000 ./. ./. 7 Under Instantaneous Current [In] A 0.1 8 6300 sec 1 1 3000 ./. ./. 8 Under Instantaneous Current [In] A 0.1 8 6300 sec 1 1 3000 ./. ./. 9 Under Instantaneous Current [In] A 0.1 8 6300 sec 1 1 3000 ./. ./. 10 Ground Current x Ing 0.01 0.1 1 sec 1 1 3000 ./. ./. 11 Over Unbalance Current [In] x Ing 0.1% 5% 60%
5 Over Instantaneous Current [Inma] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 6 Under Instantaneous Current [In] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 7 Under Instantaneous Current [In] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 8 Under Instantaneous Current [In] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 9 Under Instantaneous Current [In] (4P MCCB Only) A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 10 Ground Current x Ing 0.11 8 6300 sec 1 1 3000 \checkmark \checkmark 11 Over Unbalance Current [In] x Ing 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 12 Over Unbalance Current [Ing] X Ing 0.1% 5% 60%
6 Under Instantaneous Current [I₁] A 0.1 8 6300 sec 1 1 3000 √ √ 7 Under Instantaneous Current [I₂] A 0.1 8 6300 sec 1 1 3000 √ √ 8 Under Instantaneous Current [I₂] A 0.1 8 6300 sec 1 1 3000 √ √ 9 Under Instantaneous Current [I₀] ("4P MCCB Only) A 0.1 8 6300 sec 1 1 3000 √ √ 10 Ground Current x I₀ 0.01 0.1 1 sec 1 1 3000 √ √ 11 Over Unbalance Current [I₁] x I₀₀ 0.1% 5% 60% sec 1 1 3000 √ √ 12 Over Unbalance Current [I₀₀ x I₀₀₀ 0.1% 5% 60% sec 1 1 3000 √ √ 13 Over Unbalance Current [I₀₀₀₀ A 0.1 8 6300 sec 1
7 Under Instantaneous Current [12] A 0.1 8 6300 sec 1 1 3000 ✓ ✓ 8 Under Instantaneous Current [13] A 0.1 8 6300 sec 1 1 3000 ✓ ✓ 9 Under Instantaneous Current [14] A 0.1 8 6300 sec 1 1 3000 ✓ ✓ 10 Ground Current x 1g 0.01 0.1 1 sec 1 1 3000 ✓ ✓ 11 Over Unbalance Current [14] x 1g 0.01 0.1 1 sec 1 1 3000 ✓ ✓ 12 Over Unbalance Current [13] x 1g 0.1% 5% 60% sec 1 1 3000 ✓ ✓ 13 Over Unbalance Current [18] x 1g 0.1% 5% 60% sec 1 1 3000 ✓ ✓ 14 Over Unbalance Current [18] A 0.1 8 6300 sec 1 1
8 Under Instantaneous Current [I ₃] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 9 Under Instantaneous Current [I ₁] (*4P MCCB Only) A 0.1 8 6300 sec 1 1 3000 $$ \checkmark^* 10 Ground Current x I _g 0.01 0.1 1 sec 1 1 3000 \checkmark \checkmark^* 10 Over Unbalance Current [I ₁] x I _{arg} 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 12 Over Unbalance Current [I ₂] x I _{arg} 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 13 Over Unbalance Current [I _{ast} U _{bb}] x I _{arg} 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 14 Over Unbalance Current [I _{ast} U _{bb}] X I _{arg} 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 15 Over Instantaneous Voltage [V _{in}] A 0.
9 Under Instantaneous Current [Ih] (*4P MCCB Only) A 0.1 8 6300 sec 1 1 3000 $\sqrt{*}$ 10 Ground Current x Ig 0.01 0.1 1 sec 1 1 3000 $$ $$ 11 Over Unbalance Current [Ih] x Igo 0.1% 5% 60% sec 1 1 3000 $$ $$ 12 Over Unbalance Current [Ib] x Igo 0.1% 5% 60% sec 1 1 3000 $$ $$ 13 Over Unbalance Current [Ib] x Igo 0.1% 5% 60% sec 1 1 3000 $$ $$ 14 Over Unbalance Current [Imatumb] x Igo 0.1% 5% 60% sec 1 1 3000 $$ $$ 15 Over Unbalance Current [Iso] X Igo 0.1% 5% 60% sec 1 1 3000 $$ $$ 16 Under Average Current [Iso] A 0.1 80
10 Ground Current x lg 0.01 0.1 1 sec 1 1 3000 \checkmark \checkmark 11 Over Unbalance Current [l-] x lwg 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 12 Over Unbalance Current [l-] x lwg 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 13 Over Unbalance Current [l-] x lwg 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 14 Over Unbalance Current [l-] x lwg 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 15 Over Unbalance Current [lwg] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 16 Under Average Current [lwg] A 0.1 80 800 sec 1 1 3000 $$ \checkmark 17 Over Instantaneous Voltage [Vw] V 0.1 80 800 sec <
11 Over Unbalance Current [I:] x lavg 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 12 Over Unbalance Current [I:] x lavg 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 13 Over Unbalance Current [I:] x lavg 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 14 Over Unbalance Current [I:ast Unb] x lavg 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 15 Over Unbalance Current [I:ast Unb] x lavg 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 16 Under Average Current [I:avg] A 0.1 8 6300 sec 1 1 3000 $ \checkmark$ 17 Over Instantaneous Voltage [V:th] V 0.1 80 800 sec 1 1 3000 $ \checkmark$ 18 Over Instantaneous Voltage [V:th] V 0.1 80
12 Over Unbalance Current [l_2] x l_{avg} 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 13 Over Unbalance Current [l_3] x l_{avg} 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 14 Over Unbalance Current [l_{avg}] x l_{avg} 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 15 Over Average Current [l_{avg}] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 16 Under Average Current [l_{avg}] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 17 Over Instantaneous Voltage [V_{1N}] V 0.1 80 800 sec 1 1 3000 $$ \checkmark 18 Over Instantaneous Voltage [V_{2N}] V 0.1 80 800 sec 1 1 3000 $$ \checkmark 20 Over Instantaneous Voltage [V_{2N}] V <td< td=""></td<>
13 Over Unbalance Current [Is] $x _{avg}$ 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 14 Over Unbalance Current [Imax Unb] $x _{avg}$ 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 15 Over Average Current [Iavg] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 16 Under Average Current [Iavg] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 17 Over Instantaneous Voltage [V_{1N}] V 0.1 80 800 sec 1 1 3000 $ \checkmark$ 18 Over Instantaneous Voltage [V_{2N}] V 0.1 80 800 sec 1 1 3000 $ \checkmark$ 20 Over Instantaneous Voltage [V_{3N}] V 0.1 80 800 sec 1 1 3000 $ \checkmark$ 21 Under Instantaneous Voltage [V_{1N}]
14 Over Unbalance Current [I _{max Unb}] x I _{avg} 0.1% 5% 60% sec 1 1 3000 \checkmark \checkmark 15 Over Average Current [I _{avg}] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 16 Under Average Current [I _{avg}] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 16 Under Average Current [I _{avg}] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 17 Over Instantaneous Voltage [V _{1N}] V 0.1 80 800 sec 1 1 3000 - \checkmark 18 Over Instantaneous Voltage [V _{2N}] V 0.1 80 800 sec 1 1 3000 - \checkmark 20 Over Instantaneous Voltage [V _{2N}] V 0.1 80 800 sec 1 1 3000 - \checkmark 21 Under Instantaneous Voltage [V _{1N}] V 0.1 80 800<
15 Over Average Current [I_{avg}] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 16 Under Average Current [I_{avg}] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 17 Over Instantaneous Voltage [V_{1N}] V 0.1 80 800 sec 1 1 3000 $ \checkmark$ 18 Over Instantaneous Voltage [V_{2N}] V 0.1 80 800 sec 1 1 3000 - \checkmark 19 Over Instantaneous Voltage [V_{3N}] V 0.1 80 800 sec 1 1 3000 - \checkmark 20 Over Instantaneous Voltage [V_{3N}] V 0.1 80 800 sec 1 1 3000 - \checkmark 21 Under Instantaneous Voltage [V_{1N}] V 0.1 80 800 sec 1 1 3000 - \checkmark 22 Under Instantaneous Voltage [V_{1N}] V 0.1 80 </td
16 Under Average Current [I_{avg}] A 0.1 8 6300 sec 1 1 3000 \checkmark \checkmark 17 Over Instantaneous Voltage [V_{1N}] V 0.1 80 800 sec 1 1 3000 $ \checkmark$ 18 Over Instantaneous Voltage [V_{2N}] V 0.1 80 800 sec 1 1 3000 $ \checkmark$ 19 Over Instantaneous Voltage [V_{3N}] V 0.1 80 800 sec 1 1 3000 $ \checkmark$ 20 Over Instantaneous Voltage [V_{max}] V 0.1 80 800 sec 1 1 3000 $ \checkmark$ 21 Under Instantaneous Voltage [V_{1N}] V 0.1 80 800 sec 1 1 3000 $ \checkmark$ 22 Under Instantaneous Voltage [V_{1N}] V 0.1 80 800 sec 1 1 3000 $ \checkmark$ 23 Under Instantaneous Voltage [V_{3N}] V 0.1 80<
17 Over Instantaneous Voltage $[V_{1N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 18 Over Instantaneous Voltage $[V_{2N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 19 Over Instantaneous Voltage $[V_{2N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 20 Over Instantaneous Voltage $[V_{max}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 21 Under Instantaneous Voltage $[V_{1N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 22 Under Instantaneous Voltage $[V_{2N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 23 Under Instantaneous Voltage $[V_{3N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 24 Under Instantaneous Voltage $[V_{min}]$ V 0.1
18 Over Instantaneous Voltage $[V_{2N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 19 Over Instantaneous Voltage $[V_{3N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 20 Over Instantaneous Voltage $[V_{3N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 20 Over Instantaneous Voltage $[V_{max}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 21 Under Instantaneous Voltage $[V_{1N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 22 Under Instantaneous Voltage $[V_{2N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 23 Under Instantaneous Voltage $[V_{3N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 24 Under Instantaneous Voltage $[V_{1N}]$ V 0.1
19 Over Instantaneous Voltage $[V_{3N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 20 Over Instantaneous Voltage $[V_{max}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 21 Under Instantaneous Voltage $[V_{1N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 22 Under Instantaneous Voltage $[V_{2N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 23 Under Instantaneous Voltage $[V_{3N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 24 Under Instantaneous Voltage $[V_{min}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 25 Over Unbalance Voltage $[V_{1N}]$ X V _{avg} 0.1% 2% 30% sec 1 1 3000 \checkmark 26 Over Unbalance Voltage $[V_{1N}]$ X V _{avg} 0.
20 Over Instantaneous Voltage $[V_{max}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 21 Under Instantaneous Voltage $[V_{1N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 22 Under Instantaneous Voltage $[V_{2N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 23 Under Instantaneous Voltage $[V_{3N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 24 Under Instantaneous Voltage $[V_{min}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 25 Over Unbalance Voltage $[V_{1N}]$ x V_{avg} 0.1% 2% 30% sec 1 1 3000 \checkmark 26 Over Unbalance Voltage $[V_{1N}]$ x V_{avg} 0.4% 2% 30% sec 1 1 3000 \checkmark
21 Under Instantaneous Voltage [V_{1N}] V 0.1 80 800 sec 1 1 3000 \checkmark 22 Under Instantaneous Voltage [V_{2N}] V 0.1 80 800 sec 1 1 3000 \checkmark 23 Under Instantaneous Voltage [V_{3N}] V 0.1 80 800 sec 1 1 3000 \checkmark 23 Under Instantaneous Voltage [V_{3N}] V 0.1 80 800 sec 1 1 3000 \checkmark 24 Under Instantaneous Voltage [V_{min}] V 0.1 80 800 sec 1 1 3000 \checkmark 25 Over Unbalance Voltage [V_{1N}] x V _{avg} 0.1% 2% 30% sec 1 1 3000 \checkmark 26 Over Unbalance Voltage [V_{1N}] x V _{avg} 0.4% 2% 30% sec 1 1 3000 \checkmark
22 Under Instantaneous Voltage $[V_{2N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 23 Under Instantaneous Voltage $[V_{3N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 24 Under Instantaneous Voltage $[V_{3N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 24 Under Instantaneous Voltage $[V_{min}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 25 Over Unbalance Voltage $[V_{1N}]$ x V_{avg} 0.1% 2% 30% sec 1 1 3000 \checkmark 26 Over Unbalance Voltage $[V_{1N}]$ x V_{avg} 0.4% 2% 30% sec 1 1 3000 \checkmark
23 Under Instantaneous Voltage $[V_{3N}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 24 Under Instantaneous Voltage $[V_{min}]$ V 0.1 80 800 sec 1 1 3000 \checkmark 25 Over Unbalance Voltage $[V_{1N}]$ x V_{avg} 0.1% 2% 30% sec 1 1 3000 \checkmark 26 Over Unbalance Voltage $[V_{1N}]$ x V_{avg} 0.4% 2% 30% sec 1 1 3000 \checkmark
24 Under Instantaneous Voltage [V_min] V 0.1 80 800 sec 1 1 3000 - $$ 25 Over Unbalance Voltage [V_1N] x V _{avg} 0.1% 2% 30% sec 1 1 3000 - $$ 26 Over Unbalance Voltage [V_1N] x V _{avg} 0.1% 2% 30% sec 1 1 3000 - $$
25 Over Unbalance Voltage $[V_{1N}]$ x V_{avg} 0.1% 2% 30% sec 1 1 3000 — $$ 26 Over Unbalance Voltage $[V_{1N}]$ x V_{avg} 0.1% 2% 30% sec 1 1 3000 — $$
∠o ∪ver Unbalance voltāge [V₂N] X Vavg U.1% ∠% 30% Sec 1 1 3000 — √
27 Over Unbalance Voltage [V _{3N}] x V _{avg} 0.1% 2% 30% sec 1 1 3000 − √
28 Over Unbalance Voltage [V _{max Unb}] x V _{avg} 0.1% 2% 30% sec 1 1 3000 - √
29 Over Average Voltage [V _{avg}] V 0.1 80 800 sec 1 1 3000 − √
30 Under Average Voltage [Vavg] V 0.1 80 800 sec 1 1 3000 − √
31 Over Instantaneous Voltage [U₁2] V 0.1 80 800 sec 1 1 3000 √ √
32 Over Instantaneous Voltage [U₂₃] V 0.1 80 800 sec 1 1 3000 √ √
33 Over Instantaneous Voltage [U ₃₁] V 0.1 80 800 sec 1 1 3000 √ √
34 Over Instantaneous Voltage [U _{max}] V 0.1 80 800 sec 1 1 3000 √ √
35 Under Instantaneous Voltage [U₁2] V 0.1 80 800 sec 1 1 3000 √ √
36 Under Instantaneous Voltage [U₂₃] V 0.1 80 800 sec 1 1 3000 √ √
37 Under Instantaneous Voltage [U₃1] V 0.1 80 800 sec 1 1 3000 √ √
38 Under Instantaneous Voltage [Umin] V 0.1 80 800 sec 1 3000 ✓ ✓
39 Over Unbalance Voltage [U ₁₂] x U _{avg} 0.1% 2% 30% sec 1 1 3000 √ √
40 Over Unbalance Voltage [U ₂₃] x U _{avg} 0.1% 2% 30% sec 1 1 3000 √ √
41 Over Unbalance Voltage [U ₃₁] x U _{avg} 0.1% 2% 30% sec 1 1 3000 √ √
42 Over Unbalance Voltage [Umax Unb] x Uavg 0.1% 2% 30% sec 1 1 3000 \checkmark \checkmark

Custom Alarms

Custom alarms List

ID	Name	Pic Unit	k-up or D	Prop-out thresh	nold value	Pick	k-up or [Drop-out time of Min. Value	delay value	3Ph	3Ph+N
43	Over Direct Active power [P ₁]	kW	0.1	1 1	1000	sec	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3000	_	\checkmark
44	Over Direct Active power [P ₂]	kW	0.1	1	1000	sec	1	1	3000	_	
45	Over Direct Active power [P ₃]	kW	0.1	1	1000	sec	1	1	3000	_	
46	Over Direct Active power [Ptot]	kW	0.1	1	3000	sec	1	1	3000	\checkmark	1
47	Under Direct Active power [P1]	kW	0.1	1	1000	sec	1	1	3000	_	√
48	Under Direct Active power [P2]	kW	0.1	1	1000	sec	1	1	3000	_	
49	Under Direct Active power [P ₃]	kW	0.1	1	1000	sec	1	1	3000	_	\checkmark
50	Under Direct Active power [Ptot]	kW	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
51	Over Return Active power [P1]	kW	0.1	1	1000	sec	1	1	3000	_	\checkmark
52	Over Return Active power [P2]	kW	0.1	1	1000	sec	1	1	3000	_	\checkmark
53	Over Return Active power [P ₃]	kW	0.1	1	1000	sec	1	1	3000	_	\checkmark
54	Over Return Active power [Ptot]	kW	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
55	Under Return Active power [P1]	kW	0.1	1	1000	sec	1	1	3000	_	\checkmark
56	Under Return Active power [P2]	kW	0.1	1	1000	sec	1	1	3000	_	\checkmark
57	Under Return Active power [P ₃]	kW	0.1	1	1000	sec	1	1	3000	_	\checkmark
58	Under Return Active power [Ptot]	kW	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
59	Over Direct Reactive power [Q1]	kVAr	0.1	1	1000	sec	1	1	3000	_	\checkmark
60	Over Direct Reactive power [Q ₂]	kVAr	0.1	1	1000	sec	1	1	3000	_	\checkmark
61	Over Direct Reactive power [Q ₃]	kVAr	0.1	1	1000	sec	1	1	3000	_	\checkmark
62	Over Direct Reactive power [Qtot]	kVAr	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
63	Under Direct Reactive power [Q1]	kVAr	0.1	1	1000	sec	1	1	3000	-	\checkmark
64	Under Direct Reactive power [Q2]	kVAr	0.1	1	1000	sec	1	1	3000	-	\checkmark
65	Under Direct Reactive power [Q ₃]	kVAr	0.1	1	1000	sec	1	1	3000	-	\checkmark
66	Under Direct Reactive power [Qtot]	kVAr	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
67	Over Return Reactive power [Q1]	kVAr	0.1	1	1000	sec	1	1	3000	-	\checkmark
68	Over Return Reactive power [Q2]	kVAr	0.1	1	1000	sec	1	1	3000	—	\checkmark
69	Over Return Reactive power [Q ₃]	kVAr	0.1	1	1000	sec	1	1	3000	_	\checkmark
70	Over Return Reactive power [Qtot]	kVAr	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
71	Under Return Reactive power [Q1]	kVAr	0.1	1	1000	sec	1	1	3000	_	\checkmark
72	Under Return Reactive power [Q ₂]	kVAr	0.1	1	1000	sec	1	1	3000	-	\checkmark
73	Under Return Reactive power [Q ₃]	kVAr	0.1	1	1000	sec	1	1	3000	—	\checkmark
74	Under Return Reactive power [Qtot]	kVAr	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
75	Over Apparent power [S ₁]	kVA	0.1	1	1000	sec	1	1	3000	-	\checkmark
76	Over Apparent power [S ₂]	kVA	0.1	1	1000	sec	1	1	3000	-	\checkmark
77	Over Apparent power [S ₃]	kVA	0.1	1	1000	sec	1	1	3000	-	\checkmark
78	Over Apparent power [Stot]	kVA	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
79	Under Apparent power [S ₁]	kVA	0.1	1	1000	sec	1	1	3000	-	\checkmark
80	Under Apparent power [S ₂]	kVA	0.1	1	1000	sec	1	1	3000	-	\checkmark
81	Under Apparent power [S ₃]	kVA	0.1	1	1000	sec	1	1	3000	-	\checkmark
82	Under Apparent power [Stot]	kVA	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
83	Lagging power factor [PF ₁]	—	0.01	0	0.99	sec	1	1	3000	-	\checkmark
84	Lagging power factor [PF ₂]	—	0.01	0	0.99	sec	1	1	3000	-	\checkmark
85	Lagging power factor [PF ₃]	—	0.01	0	0.99	sec	1	1	3000	-	\checkmark
86	Lagging power factor [PF _{tot}]	_	0.01	0	0.99	sec	1	1	3000	\checkmark	\checkmark
87	Leading displacement PF [Cos ϕ_1]	_	0.01	0	0.99	sec	1	1	3000	—	\checkmark
88	Leading displacement PF [Cos φ_2]	_	0.01	0	0.99	sec	1	1	3000	—	\checkmark
89	Leading displacement PF [Cosφ ₃]	_	0.01	0	0.99	sec	1	1	3000	-	\checkmark
90	Leading displacement PF [Cos ϕ_{tot}]	_	0.01	0	0.99	sec	1	1	3000	\checkmark	\checkmark
91	Lagging displacement PF [Cos	—	0.01	0	0.99	sec	1	1	3000	-	\checkmark

Custom Alarms

Custom alarms List

ID	Name	Pic	k-up or E	Prop-out thresh	nold value	Pick-up or Drop-out time delay value		3Ph	3Ph+N		
	Numo	Unit	Res	Min. value	Max. value	Unit	Res	Min. value	Max. value	0111	
92	Lagging displacement PF [Cosφ ₂]	-	0.01	0	0.99	sec	1	1	3000	_	\checkmark
93	Lagging displacement PF [Cosφ ₃]	-	0.01	0	0.99	sec	1	1	3000	_	\checkmark
94	Lagging displacement PF [Cosφ _{tot}]	_	0.01	0	0.99	sec	1	1	3000	\checkmark	\checkmark
95	Over THD Current [THDI1]	-	0.1%	0%	1000%	sec	1	1	3000	\checkmark	\checkmark
96	Over THD Current [THDI2]	-	0.1%	0%	1000%	sec	1	1	3000	\checkmark	\checkmark
97	Over THD Current [THDI ₃]	—	0.1%	0%	1000%	sec	1	1	3000	\checkmark	\checkmark
98	Over THD Voltage [THDV _{1N}]	—	0.1%	0%	1000%	sec	1	1	3000	_	\checkmark
99	Over THD Voltage [THDV _{2N}]	—	0.1%	0%	1000%	sec	1	1	3000	—	\checkmark
100	Over THD Voltage [THDV _{3N}]	—	0.1%	0%	1000%	sec	1	1	3000	—	\checkmark
101	Over THD Voltage [THDU ₁₂]	_	0.1%	0%	1000%	sec	1	1	3000	\checkmark	\checkmark
102	Over THD Voltage [THDU ₂₃]	—	0.1%	0%	1000%	sec	1	1	3000	\checkmark	\checkmark
103	Over THD Voltage [THDU ₃₁]	—	0.1%	0%	1000%	sec	1	1	3000	\checkmark	\checkmark
104	Over frequency [F]	Hz	0.01	45	65	sec	1	1	3000	\checkmark	\checkmark
105	Under frequency [F]	Hz	0.01	45	65	sec	1	1	3000	\checkmark	\checkmark
106	Over Current demand [I1 Dmd]	А	0.1	8	6300	sec	1	1	3000	\checkmark	\checkmark
107	Over Current demand [I2 Dmd]	А	0.1	8	6300	sec	1	1	3000	\checkmark	\checkmark
108	Over Current demand [I _{3 Dmd}]	А	0.1	8	6300	sec	1	1	3000	\checkmark	\checkmark
109	Over Current demand [I _{N Dmd}] (*4P MCCB Only)	А	0.1	8	6300	sec	1	1	3000	_	\checkmark^*
110	Over Current demand [Iavg Dmd]	А	0.1	8	6300	sec	1	1	3000	\checkmark	\checkmark
111	Under Current demand [I1 Dmd]	Α	0.1	8	6300	sec	1	1	3000	\checkmark	\checkmark
112	Under Current demand [I2 Dmd]	Α	0.1	8	6300	sec	1	1	3000	\checkmark	\checkmark
113	Under Current demand [I _{3 Dmd}]	Α	0.1	8	6300	sec	1	1	3000	\checkmark	\checkmark
114	Under Current demand [I _{N Dmd}] (*4P MCCB Only)	Α	0.1	8	6300	sec	1	1	3000	_	√*
115	Under Current demand [lavg Dmd]	Α	0.1	8	6300	sec	1	1	3000	\checkmark	\checkmark
116	Over Active power demand [Ptot Dmd]	kW	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
117	Under Active power demand [Ptot Dmd]	kW	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
118	Over Reactive power demand [Qtot Dmd]	kVAr	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
119	Under Reactive power demand [Qtot Dmd]	kVAr	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
120	Over apparent power demand [Stot Dmd]	kVA	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
121	Under apparent power demand [Stot Dmd]	kVA	0.1	1	3000	sec	1	1	3000	\checkmark	\checkmark
122	Operating quadrant 1 (P>0, Q>0)	_	_	1	1	sec	1	1	3000	\checkmark	\checkmark
123	Operating quadrant 2 (P<0, Q>0)	_	_	2	2	sec	1	1	3000	\checkmark	\checkmark
124	Operating quadrant 3 (P<0, Q<0)	_	_	3	3	sec	1	1	3000	\checkmark	\checkmark
125	Operating quadrant 4 (P>0, Q<0)	_	_	4	4	sec	1	1	3000	\checkmark	\checkmark
126	Phase sequence 1->2->3	_	_	0	0	sec	1	1	3000	\checkmark	\checkmark
127	Phase sequence 1->3->2	_	_	1	1	sec	1	1	3000	\checkmark	\checkmark
128	Operating quadrant 2 or 4 (Capacitive)	_	—	0	0	sec	1	1	3000	\checkmark	\checkmark
129	Operating quadrant 1 or 3 (Inductive)	—	_	1	1	sec	1	1	3000	\checkmark	\checkmark
130	Leading Power factor PF1	—	0.01	0	0.99	sec	1	1	3000	_	\checkmark
131	Leading Power factor PF2	_	0.01	0	0.99	sec	1	1	3000	_	\checkmark
132	Leading Power factor PF3	_	0.01	0	0.99	sec	1	1	3000	_	\checkmark
133	Leading Power factor PFtot	—	0.01	0	0.99	sec	1	1	3000	\checkmark	\checkmark

OAC (Optional Alarm Contact)

The OAC is an optional alarm which can be assigned with one of several types of alarms. When the assigned alarm is activated, the alarm will display on the TPED as a pop-up notification. The OAC also has a physical contact on the P_SE which closes with the activation of the OAC alarm.

Notice: The use of the OAC physical contact requires the connection of the OAC/PTA cable to the OAC port located under the front cover of the P_SE MCCB. Refer to the P_SE User Manual for details on the OAC/PTA cable and physical contact requirements,

The OAC is configurable by assigning it an alarm type (assignment), and the contact behaviour (reset mode), which can made using one or a combination of the TPED or TPCM.

The physical contact mode is defined as either Auto-reset mode, or latching mode:

Auto-reset mode: Contact will remain CLOSED for up to 500ms after the alarm deactivates, at which point it will OPEN automatically.

Latching mode: Contact will remain CLOSED after the alarm deactivates, until the alarm is cleared via the P_SE embedded display or the TPED.

Notice: Where the PTA (Pre trip alarm) is assigned to OAC, the contact operation mode is forced to auto-reset mode, where the contact will OPEN up to 500ms after the PTA is no longer active.

Optional alarms List

ID	Custom Alarm Assignment	Remark	
0	None		
1	High OCR internal temperature		
2	Neutral monitoring wire disconnection	3Ph+N Only	
3	OCR self-test failure		
4	Reserved		
5	PTA (Pre trip alarm)		
6	Custom Alarm 1		
7	Custom Alarm 2		
8	Custom Alarm 3		
9	9 Custom Alarm 4		
10			
11			
12	Custom Alarm 7		
13 Custom Alarm 8			
14 Custom Alarm 9			
15	5 Custom Alarm 10		
16	Custom Alarm 11		
17	Custom Alarm 12		

Write Protection

WARNING: Changes and adjustments to protection settings and levels (either local or remotely) should only be performed by qualified personnel. Failure to comply may result in malfunction or damage of protective equipment, serious injury or death.

Modifications made remotely via the TPED to the MCCB configuration settings may be dangerous for personnel near the circuit breaker or may cause damage to the equipment if the protection parameters are modified.

Therefore, remote data write commands are secured with two levels of protection:

- Remote Write Authorization parameter at the MCCB for localized locking out of individual circuit breakers from remote writing access. -
- _ Password Management for limiting accessibility of performing certain configuration changes.

Remote Write Authorization

To permit writing of data to the MCCB via remote devices (i.e., external to the MCCB, such as TPCM, TPED, etc.), the remote write authorization parameter must be enabled on the MCCB via the embedded LCD menu.

This parameter is enabled via the Configuration menu of the embedded display by navigating to the Remote Write Authorization symbol as shown below and changing the value to "ON".

Refer to the P_SE User Manual for further information on navigating the embedded display.

Remote Write Authorization	Default setting
ON – OFF	ON
ON – enabled, data write commands for remote devices permitted. OFF – disabled, data write commands for remote devices prohibited.	

Write Protection

Password Management

Changes to certain configuration settings are protected by varying security access levels. To enable changing of protection settings on the TPED, a password must be entered.

The display indicates that its password lock status via a padlock symbol on the lower right of the display.

To unlock the TPED, press the Function Key "Fn" and enter the password by increasing or decreasing each of the four digits to the required value.

The default password is: 3333.

Refer to Configuration - Passwords section for details on password entry and password changes.

Starting the TPED for the First Time

The first time the TemView *PRO* is powered up the display will ask you to choose the navigation language. Default is: **English**.

	Action	Кеу	Screen
1	Select another language	≪ ≫	Language: English ►
2	Confirm the selection: - The screen is displayed in the language chosen. - The screen will switch to Default Display	ОК	V II: I2: 0.0A 2000A I3: IN: 3000A 5000A II

Passwords

Password Entry

WARNING: The default passwords should be changed during commissioning to prevent unauthorized modification to protected settings.

	Action	Кеу	Screen
1	Open the Main menu - The presence of a padlock means that the screen is locked.	€	
2	Open pop-up for password entry - The password must be 4 figures long. (default 3333)	Fn	Enter password:
3	Increase/decrease the value	& &	Enter password:
4	Select the next numbers and position the values	≪ ≫	Enter password: 1 [2] 0 0
5	Confirm your entry: Result - The screen is unlocked - The padlock symbol is open - The sub-menus are no longer locked	ОК	Enter password: 1 2 3 4 Measure Measure
			Protection Ir: 160A tr: 2.5s Isd: 5.0xIr tsd: 200ms I2t short: 0n II: 3.0xIn
6	If the password is incorrect, it must be entered again. (Repeat from step 3)	_	Enter password: D 0 0 0 Wrong Password

Password Change

WARNING: If the password is lost, it cannot be reset to factory default settings. The TPED must be replaced.

	Action	Кеу	Screen
1	Open the Configuration menu	ОК	Configuration
2	Select the sub-menu "Change the password"	& &	A Configuration Y! Change password: **** Change password: ****
3	Confirm the selection and enter the new password	ОК	Configuration Y! Configuration Y = Y = Y = Y = Y = Y = Y = Y = Y = Y
4	Increase/decrease the value	< >>	Configuration Y! Cillew password: a 1 0 0 0 V
5	Select the next numbers and position the values	≪ ≫	Configuration Y! Cillew password: 1 2 3 4 Cillew password:
6	Confirm the entry	ОК	Configuration

NHP

Protection Settings

WARNING: Risk of nuisance tripping.

Only qualified personnel are to set the protection levels. Failure to respect these instructions may cause death, serious injuries or equipment damage.

	Action	Кеу	Screen
1	Ensure the Display is unlocked. Refer to <u>Password Entry</u> section	Fn ок	Enter password:
2	Select protection	ОК	Protection
3	Scroll to the required protection sub-menu	& &	Protection Ir: 160A tr: 2.5s Isd: 5.0xIr tsd: 200ms I2t short: On II: 3.0xIn
4	Select the required sub-menu	OK	Image: Protection In: 160A tr: 2.5s Isd: 5.0xIr tsd: 200ms I2t short: 0n II: 3.0xIn
5	Select the require protection parameter	OK	Protection ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
6	Adjust the settings with the left and right arrows	≪ ≫	Protection ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
7	Confirm the require value.	ОК	Protection I:: 150A tr: 2.5s Isd: 5.0xlr tsd: 200ms I2t short: 0n II: 3.0xln
8	Repeat steps 5-9 for other protection parameters		
9	Once Complete Press the back button twice to return to the Main Menu	♠	Protection

NHP

Measurements Display

N	Н	P

	Action	Кеу	Screen
1	To view the displayed measurements Select Measure from the Main Menu	ОК	
2	Scroll up or down to view the sub-menus	* *	Measure ₩ inst max unb avg u12: u23: 116v 133v u31: 118v ★
3	Scroll left or right to view the sub- measurements	< >>	Measure V/V inst max unb avg u12: u23: 119v 120v u31: 120v v +
4	Press the back button to return to the Main Menu	Ð	

Selecting a Favourite

	Action	Кеу	Screen
1	Once in the Measurements Display Menu Press the Function button on the required measurement	Fn	Measure V Settings: U V V 1 123
2	Scroll left or right to enable Favourite	< >>	Measure
3	Once set to the require Favourite setting confirm the setting	ОК	Measure inst max unb avg U12: U23: 119v 120v U31: 120v ★
4	Press the back button to return to the Main Menu	Ð	

Setting a Custom Alarm

	Action	Key	Screen
1	Ensure the Display is unlocked. Refer to <u>Password Entry</u> section	Fn	$(1)^{\text{Enter password:}} 0 0 0$
		ОК	
2	Select Alarms	ОК	
3	Select Custom	ОК	Alarms ((▲)) + Set custom 1 (△2.11 > 1235A 3.12 > 1235A + Set custom 4 + Set custom 4 + Set custom 5 + Set custom 6 + Set custom 6
4	Select a free alarm slot	ОК	Alarms ((a)) + Set custom 1 (b) (b) (b) (custom) (custom) (PreTrip) + Set custom 4 + Set custom 5 + Set custom 6
5	Using the left or right arrow, set the required measurement	< >>	Alarms (▲) Alarm 1: Alarm 1: (ustom) PreTrip PreTrip
6	Using the up or down arrow, scroll through the required options	& &	Alarms (▲) Alarm 1: Alarm 1: Alarm 1: Alarm 1: Alarm 1: Alarm 1: Alarm 1: Alarm 1: Alarm 1: Alarm 2: PreTrip
7	Once all the require parameters have been entered	ОК	Alarms
8	Repeat steps 5-9 for other custom alarms		
9	Once Complete Press the back button twice to return to the Main Menu	Ð	

NHP

Troubleshooting

In the event of a problem when using the TPED, this section provides advice on how to resolve issues.

	Problem	Possible cause	Remedial advice	
1	Ready LED OFF or Display is blank	Insufficient or no power to the OCR	Verify power supply requirements. Refer to <u>Power Supply</u> section.	
			Verify external 24V dc power supply is operational at correct voltage and is capable of delivering sufficient current to all connected devices (including P_SE OCR, TPED and TPCM where used)	
		Incorrect or faulty wiring	Verify integrity of wiring and connections.	
			Check for and correct any: - Loose connection of CIP connector and cable in both P_SE MCCB and TPED. - Loose connection of CIP cable to external supply terminals - Incorrect supply terminals / conductors / connector pins Refer to Installation section.	
		P_SE MCCB CIP	Swap the connections on the two CIP adapter cables plugged into the accompanying P_SE MCCB.	
		connector is faulty	If fault clears then there is a fault with the original CIP connector, or the cable was not originally seated in the connector properly.	
			If possible, continue to use the new CIP connector arrangement, otherwise replace the P_SE MCCB.	
			If the fault does not clear, then verify the integrity of the CIP cable and replace if necessary.	
		TPED is faulty	Replace TPED.	
3	Communication error or	Incorrect or faulty wiring	Verify integrity of wiring and connections.	
	"TERASAKI" logo		Check for and correct any: - Loose connection of CIP connector and cable - Loose connection of CIP cable to external supply terminals - Incorrect supply terminals / conductors / connector pins Refer to Installation section.	
		P_SE MCCB CIP	Swap the connections on the two CIP adapter cables plugged into the accompanying P_SE MCCB.	
		connector is faulty	If fault clears then there is a fault with the original CIP connector, or the cable was not originally seated in the connector properly.	
			If possible, continue to use the new CIP connector arrangement, otherwise replace the P_SE MCCB.	
			If the fault does not clear, then verify the integrity of the CIP cable and replace if necessary.	
		TPED is faulty	Replace TPED.	
4	Measurement values incorrect.	Incorrect measurement settings	Review the measurement calculation and network/topology settings. Incorrect settings can produce inaccurate measurements.	
			Refer to the P_SE User Manual for details on Measurements and settings.	
5	MCCB locked	P_SE MCCB Remote Write Authorization is set to OFF	Refer to <u>Remote Write Authorization</u> section for details on enabling access to remote changes to MCCB settings.	
6	Lost / forgotten password	N/A	If the TPED password is lost, it cannot be reset or restored. TPED must be replaced.	
			Refer to Password Management section.	

Annex A – Dimensions

18 mm

Annex B – Connection Diagram

NHP

TemView PRO User Manual

Version 1.1.0 Published 23rd August 2021

> nhp.com.au nhp-nz.com

Δυ 1300 NHP NHP NZ 0800 NHP NHP

NHP Electrical Engineering Products